NDSPEED BUILD IT FIRST

CX20501

Quad Multi-Rate CDR (65 Mbps - 3.2 Gbps) Data Sheet

Contents

Contents
Applications
Ordering Information
Revision History
Figure 1. Block Diagram
Table 1. Terminal Functional Description 6
Table 2. Power DC Electrical Specifications (1). 7
Table 3. +3.3V CMOS DC Electrical Specifications (1,2) 8
Table 4. +2.5V CMOS DC Electrical Specifications ⁽¹⁾ 8
Table 5. +3.3V PCML DC Electrical Specifications ⁽¹⁾ 9
Table 6. +2.5V PCML DC Electrical Specifications ⁽¹⁾ 9
Table 7. Recommended Operating Conditions 10
Table 8. Absolute Maximum Ratings ⁽¹⁾
Table 9. High-speed PCML or AC-Coupled RF Electrical Specifications ⁽¹⁾ 11
Figure 2. Jitter Transfer Specification 12
Figure 3. Jitter Tolerance Specification (SONET specification: 0.15 UIpp at 1 MHz)
Overview
Figure 4. CDR Architecture Detail Functional Block Diagram 13
Reserved and Common Addresses
CDR Architecture
IC Partition
Input Sensitivity/Input Duty Cycle
VCO Frequency Range
Table 10. VCO Center Frequency Selection 15
Table 11. Bit Rates of Potential Applications 15
Table 12. 2.0 to 3.2 GHz Tuning Range Specification for AV _{DD} = 3.3 V (VCO Center Frequency is Approximate) 15
Table 13. 2.0 to 3.2 GHz Tuning Range Specification for AV _{DD} = 2.5 V (VCO Center Frequency is Approximate) 15
Frequency Acquisition
Window Frequency Computation

Table 14. Example Register Settings for Wide and Narrow Frequency Windows (values are in decimal format) .	. 16
Data Phase Lock	. 17
Loop Filter	. 17
Figure 5. Internal RC Loop Filter Fine Tune with Recommended External Capacitors	. 18
Figure 6. External Loop Filter Configuration	. 18
Table 15. Loop Filter Selection	. 18
Loss-Of-Signal	. 19
Loss-Of-Signal and Loss-Of-Lock Bussing	. 19
Clock to Data Output Timing	. 20
Figure 7. Clock and Data Output Skew Timing	. 20
Table 16. Clock to Data Output Skew	. 20
Table 17. Clock and Data Output Duty Cycle	. 20
CDR Bypass	. 20
Resetting the CDR	. 20
Output Drive Level	. 21
Other Features	. 21
Serial I/O Overview	. 21
Timing Diagram: Clock Set and Program Modes	. 22
Figure 8. Serial Write Mode	. 22
Figure 9. Serial Read Mode	. 22
Table 18. Serial Interface Timing—Specified at Recommended Operating Conditions	. 23
Table 19. Register Summary	. 24
Table 20. Register Description	. 25
Figure 10. BGA Package Ball Assignment Bottom View (assume package is transparent)	. 32
Figure 11. Package Drawing	. 33
Table 21. Ball Assignment Sorted by Ball Location.	. 34
Table 22. Ball Assignment Sorted by Signal Name.	. 35

Key Features

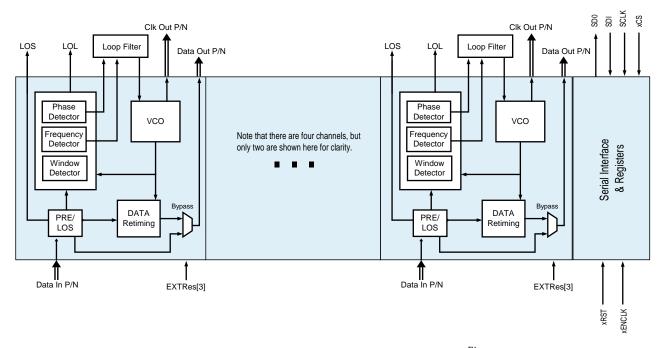
- Four independent CDRs, each running between 65 Mbps and 3.2 Gbps
- Jitter generation 7 mUI, Jitter Tolerance 0.6 UI typical
- Typical Total Power Consumption as low as 900 mW with all channels running
- · Per channel bypass mode for unsupported data rates
- Per channel power-down mode for unused channels

Applications

- SONET OC-1, OC-3, OC-12, OC-48 systems and modules
- InfiniBand systems and modules
- Digital Video Applications (SDI and HDI)
- Fibre Channel (1x, 2x, 10x) systems
- Gigabit Ethernet systems
- 10GBASE-LX4 XAUI systems & modules
- ESCON, FDDI, NTSC/PAL systems and modules
- Backplane reach extension

Product Description

The CX20501 is a quad Clock and Data Recovery (CDR) circuit designed for +3.3 or +2.5 V low power operation. As a multi-rate device, it can support data rates from 65 Mbps to 3.2 Gbps. Because each CDR operates independently, each can lock to a common frequency or to a separate frequency to support diverse applications without an external frequency reference. A quasi-limiting amplifier is used to improve the input sensitivity of the device. To save power, the individual output clocks and/or CDRs can be powered down and the output drive level is also selectable. The high-speed I/O is differential Positive Current Mode Logic (PCML) with an on-chip 50 Ω to Vdd (single-ended) input termination/output backmatch. The I/O can be used either differentially or single-ended. A serial interface (+3.3 V/+2.5 V CMOS) is used to fine-tune the frequency acquisition characteristics and the operating bit-rate. Alarms are provided for both Loss Of Lock (LOL) and Loss Of Signal (LOS), and a CDR bypass feature allows direct connection of the input data to the output buffer without re-timing. The CX20501 I/O pin configuration is a drop-in replacement for the OC-48 CX20464 single-rate quad CDR and complements all of Mindspeed's crosspoint switches. Figure 1 illustrates the quad CDR IC functional block diagram and Table 1 through Table 9 list the CX20501 electrical specifications.


Ordering Information

Name Number		Number	Package Data
	CX20501 Quad Multi-rate CDR	CX20501-12	15 mm BGA (196 pin)

Revision History

Revision	Date	Comments
Rev. C	4/02	Converted document to new format. Expanded introduction section. Loop Filter description rewritten. LOS description rewritten. Figures 6 and 7 were added. Tables 1, 2, 3, 4, 6, 7, 8, 9, 10, 17, 18, and 19 were updated.
Rev. D	6/02	Figure 1 redrawn. Figures 4, 5, 10 and 11 updated. Table 14 added. Tables 1, 3, 4, 5, 6, 7, 9, 10, 12, 13, 20 (Output Buffer Level and VCO Control), 21 and 22 updated.
Rev. E	9/02	Tables 8, 9, 10, 11, 13, 14, 20, and 21 were updated. Inserted new Table 18. Revised Figures 7 and 9. Revised the following sections: CDR Archecture, Input Sensitivity/Input Duty Cycle, VCO Frequency Range, Window Frequency Computation, Loop Filter, Loss-Of-Signal and Loss-Of-Lock Bussing, CDR Bypass, Output Drive Level, Other Features, Timing Diagrams: Clock Set and Program Modes.
Rev. A	12/02	Revised Document Number.
Rev. B	3/03	Updated specifications with electrical characterization results.

Figure 1. Block Diagram

SmartCenterTM patent no. US 6,316,966 B1 granted Nov 13, 2001

Introduction

This document uses the following text styling conventions: CDR signal names and terminal numbers are listed with initial caps denoting each functional name part, with its related signal polarity indicated by an upper case 'N' or 'P'. Thus, data input signal names are indicated, for example as: 'DinP' and 'DinN'.

A signal name and an associated CDR channel number (0 through 3) are indicated as DinP[n] and DinN[n] where 'n' is a channel number. Register names are preceded by the word 'register' and typed in all upper case with each functional name part separated by an underscore. Additionally, brackets group register bit numbers, and sub-function parts are in initial caps such as for example: 'register CONTROL_FUNCTION[5:4] Los_hyst'.

Note: There is no space between the name and the first bracket, and a space after the last bracket. The underscore is unique to hysteresis related register names and not universally used in the CX20501 functional description.

Because this unit has four identical CDRs, unless otherwise noted, the same register name applies to each CDR but different addresses describe an unique register.

To better distinguish terminal names from internal signal names the word terminal is included in all references to input, output, or control terminals, such as for example only: 'terminal LOS controls that function', and 'when the LOS terminal = H this function occurs'. In a similar manner references to signal names include the word signal.

Table 1. Terminal Functional Description

Name	Function	Notes	Туре	Signal
DinP[3:0]	Positive high-speed data input	1	I	PCML
DinN[3:0]	Negative high-speed data input	1	I	PCML
DoutP[3:0]	Positive high-speed data output	_	0	PCML
DoutN[3:0]	Negative high-speed data output	_	0	PCML
CoutP[3:0]	Positive recovered clock output	_	0	PCML
CoutN[3:0]	Negative recovered clock output	_	0	PCML
LOS[3:0]	Loss of signal	5	0	CMOS
LOL[3:0]	Loss of lock	5	0	CMOS
LPPp[3:0]	Positive external loop filter (phase detector)	—	А	Analog
LPPn[3:0]	Negative external loop filter (phase detector)	—	А	Analog
LPPf[3:0]	Positive external loop filter (frequency detector)	2	А	Analog
EXTres[3:0]	External reference resistor (12 K Ω +/- 1% to V _{SS})	_	А	Analog
SClk	Serial I/O clock	-	I	CMOS
xCS	Chip select: active low I/O enable	-	I	CMOS
SDI	Serial data input	-	I	CMOS
SDO	Serial data output (high - Z state when not selected)	—	0	CMOS
xENClk	Global HS output clock enable (active low)	—	I	CMOS
xRST	Reset to default state (active Low)	—	I	CMOS
AV _{DD} C	Positive supply for CDR core	3	Р	PWR
AV _{DD} O	Positive supply for output drivers	3	Р	PWR
AV _{DD} V[3:0]	Positive supply for VCO	3	Р	PWR
AV _{SS} C	Negative supply for CDR core	3	Р	PWR
AV _{SS} O	Negative supply for output driver	3	Р	PWR
AV _{SS} V[3:0]	Negative supply for VCO	3	P	PWR
DV _{DD}	Positive digital supply	3	P	PWR
DV _{SS}	Negative digital supply	3	Р	PWR
Ftest[3:0,d:a]	Mindspeed Technologies test pins	4	I	MSPD reserved
Test[3:0,c:a]	Mindspeed Technologies test pins	4	I/O	MSPD reserved

Table 1. Terminal Functional Description

Name	Function	Notes	Туре	Signal
Notes:				•
1. Higher input sensiti	vity and common-mode range over standard PCML.			
2. LPPf is a separate	pin for lower noise.			
	ower and grounds are maintained for all four CDRs and connected	ed together wi	ith a low induc	ctance plane in the package
4. Leave Mindspeed t	est pins floating.			
5. Various signals from	n different CDRs can be connected in parallel to form a LOS/LOI	bus if enable	ed in the OUT	RF_CTRI [5:4] register

Table 2. Power DC Electrical Specifications ⁽¹⁾

Symbol	Item	Notes	Minimum	Typical	Maximum	Units
Diss	DV _{DD} : control logic	2	_	0.23	.75	mA
AissC	AV _{DD} C: CDR core/per CDR	_	_	46	48	mA
AissV	AV _{DD} V: VCO/per CDR	2	_	20	21	mA
AissO	AV _{DD} O: output drivers/per CDR	2, 3	_	24	25	mA
I _{total}	Total current/per CDR	2	_	90	93	mA
P _{diss} /CDR	Total power dissipation per CDR	4	-	300	330	mW
P _{diss}	Total quad power dissipation	4, 5	-	1.2	1.32	W

Notes:

1. Specified at Recommended Operating Conditions. See Table 7.

2. Total current computed per CDR channel

3. Computed with clock outputs disabled, data outputs in low output swing mode, and phase lock loop (PLL) in lock

4. Typical P_{diss} computed at +3.3 V and maximum PDISS computed at +3.6 V

5. With both clock and data outputs enabled on all four CDRs in high-swing mode, typically, power dissipation is 1.6W

Symbol	Item	Notes	Minimum	Typical	Maximum	Units
V _{OH}	Output logic high I_{OH} = -100 µA	-	3.0	3.2	—	V
V _{OH}	Output logic high I _{OH} = -3 mA	-	2.8	3.0	—	V
V _{OL}	Output logic low I_{OL} = 100 μ A	-	—	0.08	0.4	V
V _{OL}	Output logic low I _{OL} = 3 mA	-	—	0.24	0.65	V
V _{OL}	Output logic low I _{OL} = 16 mA	-	—	0.64	0.85	V
I _{OH}	Output current (logic high)	-	-3.0	—	0	mA
I _{OL}	Output current (logic low)	-	0	—	3.0	mA
V _{IH}	Input logic high	-	1.5	—	V _{DD} + 0.3	V
V _{IL}	Input logic low	-	V _{SS} – 0.3	—	1.4	V
I _{IH}	Input current (logic high)	-	-380	—	460	nA
IIL	Input current (logic low)	-	-13	—	0	μA

 Table 3. +3.3V CMOS DC Electrical Specifications ^(1,2)

 Table 4. +2.5V CMOS DC Electrical Specifications⁽¹⁾

Symbol	Item	Notes	Minimum	Typical	Maximum	Units
V _{OH}	Output logic high I_{OH} = -100 µA	-	1.5	2.13	-	V
V _{OH}	Output logic high $I_{OH} = -3 \text{ mA}$	—	1.35	1.95	_	V
V _{OL}	Output logic low I_{OL} = 100 μ A	-	—	0.4	1.4	V
V _{OL}	Output logic low I _{OL} = 3 mA	_	_	0.54	1.25	V
V _{OL}	Output logic low I _{OL} = 16 mA	_	_	0.78	1.12	V
I _{OH}	Output current (logic high)	_	-3.0	_	0	mA
I _{OL}	Output current (logic low)	-	0	—	3.0	mA
V _{IH}	Input logic high	-	1.1		V _{DD} + 0.3	V
V _{IL}	Input logic low	-	V _{SS} – 0.3		1.0	V
IIH	Input current (logic high)	-	-380		460	nA
IIL	Input current (logic low)	_	-13	_	0	μA

1. Specified at Recommended Operating Conditions. See Table 7.

Table 5. +3.3V PCML DC Electrical Specifications⁽¹⁾

Parameter	Notes	Minimum	Typical	Maximum	Units
Input differential voltage (peak-to-peak)	2, 4	20	_	1200	mV
Input common-mode voltage	3, 4	V _{DD} - 500	_	V _{DD} + 100	mV
Differential output voltage—high swing (peak-to-peak)	2	730	_	960	mV
Differential output voltage—low swing (peak-to-peak)	2	410	_	560	mV
Low swing: output logic high	5	V _{DD} - 40	_	V _{DD}	mV
Low swing: output logic low	5	V _{DD} - 280	_	V _{DD} - 240	mV
High swing: output logic high	5	V _{DD} - 45	_	V _{DD}	mV
High swing: output logic low	5	V _{DD} - 480	—	V _{DD} - 400	mV

Notes:

1. Specified at Recommended Operating Conditions. See Table 7.

2. Example 1200 mV differential peak-to-peak translates to 600 mV peak-to-peak for each single-ended terminal

3. Designed for DC-coupled PCML or AC-coupled CML, PECL, ECL (ECL may require off-chip attenuation)

4. Absolute maximum differential input voltage and common mode not to exceed V_{DD} +300 mV

5. Output high and output low values are RMS measured values.

6. Clock output swing is typically 60% of data output swing.

Table 6. +2.5V PCML DC Electrical Specifications ⁽¹⁾

Parameter	Notes	Minimum	Typical	Maximum	Units
Input differential voltage (peak-to-peak)	2, 4	20	_	1200	mV
Input common-mode voltage	3, 4	V _{DD} - 500	_	V _{DD} + 100	mV
Differential output voltage—high swing (peak-to-peak)	2	720	_	900	mV
Differential output voltage—low swing (peak-to-peak)	2	380	_	520	mV
Low swing: output logic high	5	V _{DD} - 40	_	V _{DD}	mV
Low swing: output logic low	5	V _{DD} - 260	_	V _{DD} - 225	mV
High swing: output logic high	5	V _{DD} – 45	_	V _{DD}	mV
High swing: output logic low	5	$V_{DD} - 450$		V _{DD} - 380	mV

Notes:

1. Specified at Recommended Operating Conditions. See Table 7.

2. Example 1200 mV differential peak-to-peak translates to 600 mV peak-to-peak for each single-ended terminal.

3. Designed for DC-coupled PCML or AC-coupled CML, PECL, ECL (ECL may require off-chip attenuation).

4. Absolute maximum differential input voltage and common mode not to exceed V_{DD} + 300 mV.

5. Output high and output low values are RMS measured values.

6. Clock output swing is typically 80% of data output swing.

Table 7. Recommended Operating Conditions

Parameter	Notes	Symbol	Minimum	Typical	Maximum	Units
Core Supply Voltage	1	AvddC	_	2.5/3.3	_	V
Output Supply Voltage	1	AvddO	—	2.5/3.3	-	V
Program Supply Voltage	1	DVddP	—	2.5/3.3	—	V
VCO Supply Voltage	1	AvddV	—	2.5/3.3	—	V
Case Temperature	—	Tc	0	_	+100	°C
Case to ambient thermal resistance	2	θ _{ca}	_	18		°C/W
Case to ambient thermal resistance	3	θ_{ca}	—	23	—	°C/W
Note: 1. Product will operate with +2.5 V \pm 5% or +3.3 V \pm 10% 2. θ_{ca} with an airflow velocity of 1 m/sec.	%	1	1		1	

3. θ_{ca} with no airflow, convection cooling only.

Table 8. Absolute Maximum Ratings ⁽¹⁾

Symbol	Item	Minimum	Maximum	Units
DVddP	Program supply voltage	_	3.6	V
AVddC	Core supply voltage	_	3.6	V
AVddO	Output supply voltage	_	3.6	V
AVddV	VCO supply voltage	_	3.6	V
Tst	Storage temperature	-65	+150	°C
ESD	Human body model	1500	_	V
ESD	Charge device model	200	_	V
Note: 1. No Damage.		•		

Parameter	Notes	Minimum	Typical	Maximum	Units
Input Bit Rate (NRZ data)	2, 4, 7, 9	2.0/N	—	3.2/N	Gbps
Jitter Transfer	4, 9	—	—	_	Figure
Jitter Tolerance	4, 9	—	_	_	Figure
Jitter Tolerance > 250 kHz	9	0.6	—	_	UI p-p
Clock Jitter Generation (RMS)	3, 4, 6, 10	—	—	0.007	UI rms
Clock Jitter Generation (peak-to-peak)	3, 4, 6, 10	—	—	0.063	UI p-p
Data Output Jitter (RMS)	6, 8, 9	—	7	12	ps
Data Output Jitter (peak-to-peak)	6, 8, 9	—	44	60	ps
Adjacent Channel Isolation	11	30	—	_	dB
Rise Time/ Fall Time (20 to 80%)	6, 11	_	—	100	ps
Output Return Loss (40 MHz to 2.5 GHz)	5, 6, 11	—	-15.0	_	dB
Output Return Loss (2.5 GHz to 5 GHz)	5, 6, 11	—	-5.0	—	dB
Input Return Loss (40 MHz to 2.5 GHz)	5, 6, 9	—	-15.0	_	dB
Input Return Loss (2.5 GHz to 5 GHz)	5, 6, 9	—	-5.0	_	dB

Table 9.	High-speed PCML	. or AC-Coupled RF	Electrical S	pecifications ⁽¹⁾
----------	-----------------	--------------------	--------------	------------------------------

Notes:

1. Specified at Recommended Operating Conditions. See Table 7.

2. Default operation for OC-48 with VCO centered at 2.48832 GHz, device can be programmed to operate at data rates from 2.0/N to 3.2/N Gbps.

3. Measurement jitter bandwidth is 12 kHz to 20 MHz. Clock jitter generation measured per SONET standards.

4. Tested with 50 mV p-p differential input and 2²³-1 PRBS pattern.

5. Return loss computed with worst case > 3 sigma 20% variation of resistance

6. Performance specifications listed are for data rates of 2.488 Gbps

7. N = 1, 2, 4, 8, 16, or 32

8. Peak-to-peak jitter increases by approximately 0.06 ps/Mbps at data rates above 2.488 Gbps. RMS jitter increases proportionally.

9. This specification only applies to data.

10. This specification only applies to clock output.

11. This specification applies to both clock and data output.

MNDSPEED

CX20501 Quad Multi-Rate CDR (65 Mbps - 3.2 Gbps)

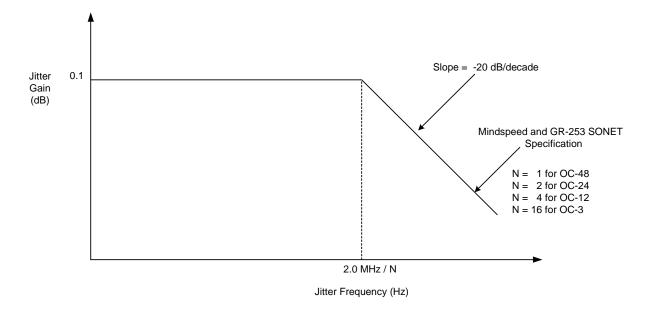
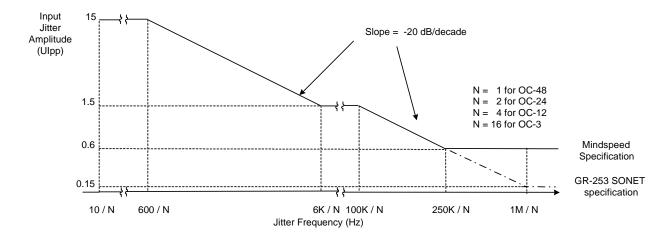
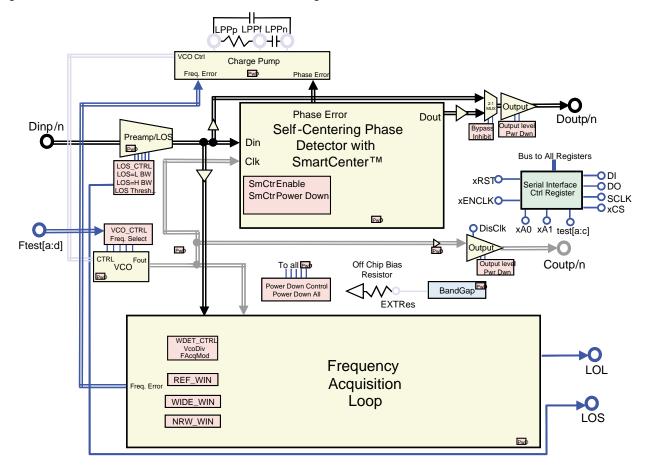



Figure 3. Jitter Tolerance Specification (SONET specification: 0.15 Ulpp at 1 MHz)


Functional Description

Overview

Figure 4 illustrates the detailed functional block diagram of individual CDRs (the serial interface is not repeated). A serial interface (described in the next section) provides access to the numerous features and options stored in the CX20501 internal memory register.

Table 19 contains a summary of register names, addresses, and bit functions. Table 20 contains a detailed description of the register functions.

Reserved and Common Addresses

The following addresses are reserved for various CDRs: 00h-0Dh for CDR#0 40h-4Dh for CDR#1 80h-8Dh for CDR#2 C0h-CDh for CDR#3 Addresses 20h to 25h are common to all four CDRs

CDR Architecture

A limiting preamplifier improves input sensitivity and amplifies input data (DinP/DinN) to remove input duty cycle offsets before extracting the recovered clock (CoutP/CoutN) and re-timing the data (DoutP/DoutN).

The input data also passes through a loss-of-signal (LOS) detector to determine if the input signal exceeds a threshold of approximately 240 mV. This design feature, which is based on a self-centering phase detector with a built-in decision circuit, prevents the CDR from locking to noise from a coupled channel. Patented SmartCenter[™] topology maintains a centered decision point regardless of data transition density changes (e.g. in the A1/A2 bytes of a SONET header).

SmartCenter[™] also keeps the clock centered in the phase margin of the decision flip-flop regardless of temperature, process, and power supply variations. This assures maximum jitter tolerance above the 100 KHz pole.

A frequency detector (FD) works with a frequency window detector (FWD) for frequency acquisition in the absence of an external timing reference. This allows each CDR to operate at different frequencies, which is not achievable with reference based CDRs.

For example, some CDRs can lock to 2.488 Gbps while others may lock at 2.6 or 3.2 Gbps data rates. If the VCO frequency is within the programmable window, the frequency acquisition loop is shut off, so the CDR PLL can achieve phase lock. If not, the frequency acquisition loop is enabled to aid acquisition. The frequency windows differ to increase robustness; the out-of-lock default is: 4,167 ppm and the in-lock default is 93,750 ppm.

IC Partition

All CDRs are identical and each uses a separate on-chip power supply and ground. The individual supplies are connected to low inductance planes within the package; however, each VCO supply is individually brought out for maximum isolation.

Both the positive and negative power supplies are expected to be planes on the printed circuit board (PCB) and all power pins should be bypassed according to standard practices.

The four pairs of supply voltages: $AV_{DD}Vn/AV_{SS}Vn$ (n = 0, 1, 2, 3) should each be bypassed with a large electrolytic capacitor (4.7 μ F or larger) along with smaller high-speed capacitors. Unused I/Os and CDRs can be individually powered off to save power and reduce possible sources of crosstalk.

Input Sensitivity/Input Duty Cycle

For improved input sensitivity, input data passes through a preamplifier/quasi-limiting amplifier to amplify the attenuated data signal to full internal logic swing. The differential input sensitivity is 20 mV p-p, which translates to 10 mV p-p on each single-ended input for full logic level into the decision flip-flop. A duty cycle correction servo with a low 3 dB cutoff point of 8 kHz corrects for possible input duty cycle distortion. When enabled, the servo removes any input offset to attain a 50% duty cycle output to the internal decision circuit. To enable this feature, set PD_CTRL0[7] = 0 (default is disabled).

VCO Frequency Range

The default VCO frequency is centered at 2.488 GHz for OC-48 operation. However, to support FEC and non-SONET applications, the VCO frequency can be moved with the VCO_CTRL[6:4] registers. The frequency range is from 2.0 GHz to approximately 3.2 GHz. Mindspeed Technologies centers the OC-48 default setting; the other ranges are approximate. Table 10 and Table 11 show the center frequencies and applications. Table 12 and Table 13 specify the tuning range of each of the center frequencies, grouped by power supply.

Divider Ratio	Ctrl5	Ctrl4	Ctrl3	Ctrl2	Ctrl1	Ctrl0	Unit
Divide by 1	3200.0	3000.0	2750.0	2500.0	2250.0	2000.0	MHz
Divide by 2	1600.0	1500.0	1375.0	1250.0	1125.0	1000.0	MHz
Divide by 4	800.0	750.0	687.5	625.0	562.5	500.0	MHz
Divide by 8	400.0	375.0	343.8	312.5	281.3	250.0	MHz
Divide by 16	200.0	187.5	171.9	156.3	140.6	125.0	MHz
Divide by 32	100.0	93.8	85.9	78.1	70.3	62.5	MHz

Table 10. VCO Center Frequency Selection

Table 11. Bit Rates of Potential Applications

Divider Ratio	SONET FEC2	ESCON	HDTV	SONET FEC	GigEtherNet	SONET	D1 Video	FibChan	Sysplex	FDDI	Fast Ether	Unit
Divide by 1	3200.0	3200.0	2970.0	2700.0	2500.0	2488.3	2160.0	2124.0	2048.0	2000.0	2000.0	MHz
Divide by 2	1600.0	1600.0	1485.0	1350.0	1250.0	1244.2	1080.0	1062.0	1024.0	1000.0	1000.0	MHz
Divide by 4	800.0	800.0	742.5	675.0	625.0	622.1	540.0	531.0	512.0	500.0	500.0	MHz
Divide by 8	400.0	400.0	371.3	337.5	312.5	311.0	270.0	266.0	256.0	250.0	250.0	MHz
Divide by 16	200.0	200.0	185.6	168.8	156.3	155.5	135.0	133.0	128.0	125.0	125.0	MHz
Divide by 32	100.0	100.0	92.8	84.4	78.1	77.8	67.5	66.5	64.0	62.5	62.5	MHz

Table 12. 2.0 to 3.2 GHz Tuning Range Specification for AV_{DD} = 3.3 V (VCO Center Frequency is Approximate)

VCO Setting (GHz)	AV _{DD} = 3.3 V					
	VCO Min (GHz)	VCO Max (GHz)				
2.0	2.04	2.20				
2.25	2.22	2.43				
2.5	2.48	2.71				
2.75	2.65	2.87				
3.0	2.98	3.28				
3.2	3.19	3.37				

Table 13. 2.0 to 3.2 GHz Tuning Range Specification for AV_{DD} = 2.5 V (VCO Center Frequency is Approximate)

VCO Setting (GHz)	AV _{DD} = 2.5 V					
	VCO Min (GHz)	VCO Max (GHz)				
2.0	1.96	2.10				
2.25	2.12	2.30				
2.5	2.37	2.56				
2.75	2.52	2.70				
3.0	2.87	3.09				
3.2	3.09	3.28				

Frequency Acquisition

A frequency detector (FD) circuit is employed to determine the frequency difference between the input data and the VCO frequency. Four registers are used to determine the frequency window detector (FWD) characteristics.

First, register WDET_CTRL[4:1] determines the VCO pre-scale value, denoted as N, then register REF_WIN[7:0] sets the reference frequency window, denoted as W_{ref.} The out-of-lock window is set with register NRW_WIN[7:0] (W_{narrow}) and the in-lock window is set with register WIDE_WIN[7:0] (W_{wide}).

When output terminal LOL = H, the PLL is out-of-lock, and a narrow window is used to bring the VCO close to the locking frequency. When output terminal LOL = L, the PLL is in-lock and a wide window signals an out-of-lock condition.

Window Frequency Computation

The window frequency is computed as:

$$\begin{split} F_{narrow} &= \frac{W_{narrow}}{W_{ref}} \times 4 \times \frac{f_{vco}}{N} \ \text{(Used for terminal LOL= H to L)} \\ F_{wide} &= \frac{W_{wide}}{W_{ref}} \times 4 \times \frac{f_{vco}}{N} \ \text{(Used for terminal LOL= L to H)} \end{split}$$

The defaults are:

N = 1536 W_{narrow} = 08h W_{wide} = B4h W_{ref} = 5

This implies a 4,167 ppm narrow window and a 93,750 ppm wide window. For OC-48, this translates into windows of 10.4 MHz and 234.4 MHz, respectively. Large values of the W registers will increase the frequency resolution and may also increase the window sample time, which will affect the acquisition time.

Table 14 contains recommended register settings that provide robust frequency acquisition performance for various bit rates. Note that the window values are different for each of the VCO divider ratios and the values listed are decimal values. These suggested values should be considered for use as initial settings, the optimum values for each application may vary slightly.

Table 14. Example Register Settings for Wide and Narrow Frequency Windows (values are in decimal format)

For VCO Divider Ratio:	1	2	4	8	16	32
Ref window address 00h, 40h, 80h, C0h	20	40	80	80	80	80
Narrow window address 01h, 41h, 81h, C1h	58	58	58	58	58	58
Wide window address 02h, 42h, 82h, C2h	59	59	59	59	59	59
Window detector divide ratio address 03h, 43h, 83h, C3h, bits 4:1	1536	1536	1536	3072	6144	12288

With the signal LOLinternal = 1, the frequency acquisition loop (FAL) is enabled to drive the VCO to the narrow frequency window. When the VCO is within the window, the CDR loop is left to obtain phase lock. With signal LOLinternal = 0, the FAL is not enabled until the VCO frequency is beyond the wide window. The signal LOL internal that controls the FAL can be enabled only with a loss of lock (register WDET_CTRL[0] = 0, default), or either the loss of lock or loss of signal (register WDET_CTRL[0] = 1).

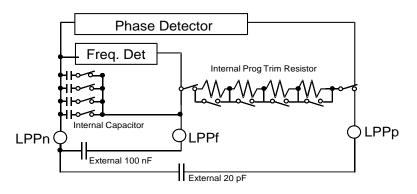
The LOL hysteresis function (register WDET_CTRL[7:6] Lol_hyst, address 03h) programs the number of consecutive identical internal loss of lock decisions that must occur before the loss of lock status is modified. This function is controlled by bits 6 and 7 of register 03h, and the default value is to update loss of lock status after one decision.

Data Phase Lock

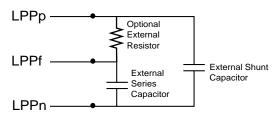
When the VCO frequency is within the frequency window, the CDR PLL must acquire and maintain phase lock in relationship to the input data. A linear self-centering phase detector centers the clock within the data. SmartCenterTM circuitry in the phase detector (PD) circuit stabilizes the sampling point for process, temperature, power supply, and transition density. With real data, the pattern transition density can change, especially in the A1/A2 bytes in a SONET header. This can cause pattern- dependent jitter if the related PD phase-transfer curves do not intersect at the static phase operating point.

The primary feature of SmartCenter[™] is to minimize this source of jitter. The secondary SmartCenter[™] feature ensures the clock/ data phase-lock relationship is centered within the phase-margin of the decision flip-flop, and provide maximum jitter tolerance over the SONET specifications.

SmartCenterTM can be disabled with register MAST_CTRL[0] = 0 and powered off with register MAST_CTRL[1] = 1. The SmartCenterTM default is power on and enabled.


Loop Filter

A differential RC loop filter is used for low noise and low jitter operation. The CX20501 includes an integrated resistor and capacitor with programmable values so that the loop filter frequency response can be modified for different data rates. In addition to the integrated loop filter components, some external components are required to implement the complete loop filter. See Figure 5 for an illustration of the loop filter topology showing the integrated components as well as recommended external components. The phase detector charge-pump connects between LPPp and LPPn and the frequency detector charge pump connects between LPPf and LPPn. The recommended external loop filter component configuration is shown in Figure 6. A series capacitor with a value of 100 nF should be placed between LPPf and LPPn, and a shunt capacitor with a value of 20 pF should be placed between LPPp and LPPn. If the programmable loop-filter is not desired, connect an external 150 Ω low-noise series resistor between LPPp and LPPf in addition to the recommended external series and shunt capacitors.


By default, the data rate selected through VCO_DIV[2:0] programs the correct values for the integrated loop filter components for different SONET rates. LOOP_FILTER[7] = 1 will bypass this default auto-selection, and LOOP_FILTER[6:3] (damping) and LOOP_FILTER[2:0] (bandwidth) set the effective RC value. With auto-selection disabled, the default condition is LOOP_FILTER[6:3] = 0111b and LOOP_FILTER[2:0] = 000b, the latter disabling (open) the internal resistor. If an internal resistor is not selected by LOOP_FILTER[2:0] = 000b, an external resistor of 150 ohms is needed in addition to the two external capacitors. Table 15 summarizes the manual settings, which are used with non-SONET bit rates. In either the auto or manual loop mode, LOOP_TRIM[2:0] provides a trim register for 60% to 130% trim (default is 60% (000b), 100% (100b) should be set for OC-48 operation). This can be used to optimize the performance, especially for nonstandard bit rates.

See Table 15 when selecting internal capacitor and resistor settings.

Figure 5. Internal RC Loop Filter Fine Tune with Recommended External Capacitors

Figure 6. External Loop Filter Configuration

Table 15. Loop Filter Selection

Data Rate (Gbps)	Max. Bandwidth (MHz)	Peaking (dB)	Resistor (Ω) ⁽¹⁾	Damping value ⁽¹⁾
3.1250	2.3	<0.06	150	340
2.7000	2.0	<0.06	150	320
2.4880	1.9	<0.06	150	300
2.0000	1.5	<0.06	150	240
1.2500	0.95	<0.06	300	150
1.0625	0.75	<0.06	300	120
0.622	0.45	<0.06	600	75
0.311	0.23	<0.06	1200	36
0.155	0.10	<0.06	2400	18
0.77	0.055	<0.06	4800	9

Loss-Of-Signal

The input data is compared to a threshold in the LOS detector to determine if a signal is present at the input of the CDR or not. There is hysteresis designed into the LOS detector such that the threshold levels are different for a L-H transition and for a H-L transition. The thresholds are set such that LOS will be asserted high if the p-p amplitude of the input signal is below approximately 56 mV.

Once LOS is asserted, the signal will be held high until the p-p input amplitude is greater than approximately 240 mV. If the p-p amplitude of the input signal is greater than 240 mV, then LOS will be held low. If the p-p amplitude of the input signal is between 56 mV and 240 mV, the status of LOS is undefined, and could be high, low, or toggling.

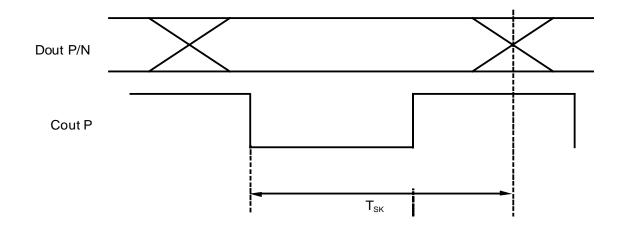
Since the LOS detector looks at the average threshold crossing, the LOS detector has an associated bandwidth. When LOS = L, the default bandwidth of 7.9 KHz (set by LOS_CTRL[7:6]) minimizes false LOS L-to-H transitions with the CDR in-lock.

To quickly enable LOS H-to-L transitions, the LOS = H default bandwidth is 800 KHz (set by LOS_CTRL[5:4]).

Loss-Of-Signal and Loss-Of-Lock Bussing

For applications with one or more CX20501 devices, both the *LOL* and *LOS* can be wired "OR". In this case, the outputs of *LOS* or *LOL* will be at a logic high when a loss alarm is active. When the alarm is not active, the outputs will be in a high impedance state instead of logic low. Without any alarms, all outputs are three-stated and requires an external 100 K Ω pull-down resistor connected to *DVss*. This feature is enabled for Loss-Of-Signal with *OUTBF_CTRL*[5] = 1 (default) and for Loss-Of-Lock with *OUTBF_CTRL*[4] = 1 (default). When either bit is set to 0 and the alarm is not active, the output is pulled low to maintain backward compatibility with the CX20464. When the alarm is enabled, the alarm status of the four CDRs can be read from *LOX_STAT1*[7:0] & *LOX_STAT2*[7:0].

LOX_STAT1/2[7] is LOS for CDR#3	LOX_STAT1/2[3] is LOS for CDR#1
LOX_STAT1/2[6] is LOL for CDR#3	LOX_STAT1/2[2] is LOL for CDR#1
LOX_STAT1/2[5] is LOS for CDR#2	LOX_STAT1/2[1] is LOS for CDR#0
LOX_STAT1/2[4] is LOL for CDR#2	LOX_STAT1/2[0] is LOL for CDR#0


When the Loss-Of-Signal circuit is powered down, it is forced low when the buss mode is not selected and forced to a high-Z state when the buss mode is selected. LOX_STAT1[7:0] always reflects the current status of the alarms. When any individual alarm changes from a no-alarm to an alarm condition, the alarm bit can be immediately read from LOX_STAT2[7:0]. The alarm bit stays in the alarm condition until LOX_STAT2[7:0] is read, after which the contents of LOX_STAT1[7:0] are copied to LOX_STAT2[7:0]. If the alarm condition has been resolved, it will clear upon read; if the alarm condition persists, it will remain in an alarm state. A value of '1' in an alarm register indicates the alarm is high (asserted), a value of '0' indicates the alarm is low (not-asserted).

If the *LOS/LOL* bussing function is not enabled ($OUTBF_CTRL[5/4] = 0$), the *LOS* and *LOL* pins and *LOX_STAT1*[7:0] reflect the current status. If the *LOS/LOL* bussing function is enabled ($OUTBF_CTRL[5/4] = 1$), LOX_STAT1 [7:0] always reflects the current status of *LOS* and *LOL*. When bussed, *MAST_CTRL2*[3] = 0 (default) leaves the *LOS* and *LOL* output pins in a high-Z state. When not bussed, *MAST_CTRL2*[3] = 1 sets the *LOS* and *LOL* output pins to reflect the current actual status.

Clock to Data Output Timing

The clock and data output skew timing is defined in Figure 7.

Figure 7. Clock and Data Output Skew Timing

The specifications for the clock and data output skew are shown in Table 16, and the specifications for the clock output duty cycle are shown in Table 17.

Table 16. Clock to Data Output Skew

Symbol	ltem	Min.	Тур.	Max.	Units
Т _{SK}	Skew relative to clock falling edge	245	320	390	ps

Table 17. Clock and Data Output Duty Cycle

Symbol	Item	Min.	Тур.	Max.	Units
C _{DC}	Clock output duty cycle	47	49.4	52.5	%
D _{DC}	Data output duty cycle	44.5	49.4	54.5	%

CDR Bypass

In cases where the input data exceeds the operating range of the CX20501, the CDR re-timing function can be bypassed with *MAST_CTRL2*[4] = 1 (default is with re-timing). Loss-Of-Signal and the Loss-Of-Lock continue to function.

Resetting the CDR

Three different resets are available on the CX20501, one hardware reset and two types of software resets. Any of the three resets loads the default values into the CDR registers of the device. A hardware reset is required after initial power up and is executed by holding the xRST pin low for a minimum of 20 ns, then pulling the xRST pin high. The CX20501 will be available within 20 ns after the xRST pin returns to a high state. In addition to the hardware reset, there are two software resets: A global software reset which resets all four CDRs and an individual software reset that resets a specific CDR channel while leaving the other three CDR channels undisturbed. The global reset is register address 21h and the individual software reset registers are addresses 11h, 51h, 91h, and D1h. To issue either type of software reset, two consecutive writes of AAh to the appropriate address is required. The first write of AAh

puts the device/channel into reset and the second brings the device/channel out of reset.

Output Drive Level

 $OUTBF_CTRL[3:2]$ controls the clock drive level and powers the buffer on/off. By default, the register selects power-on, low swing. All four clock outputs are controlled by the **xENCLK** pin. If **xENCLK** = H, all outputs are off (hardware clock disable has priority over register settings for 500 mV output swing). If **xENCLK** = L, the software register, which defaults to low swing for the clock outputs, controls the output drivers. $OUTBF_CTRL[1:0]$ selects the output drive level and power the data output driver on/off. The default value is data buffer power-on with low swing.

To minimize noise propagation when several CDRs are chained together, as in a cross-connect application, an inhibit mode is controlled by MAST_CTRL2[6:5].

MAST_CTRL2[6:5] = 00b (default) disables the inhibit

01b is a software forced inhibit

10b is inhibit with *LOL* = H only

11b is inhibit with *LOL* or *LOS* = H.

When the inhibit feature is enabled, the output is held H if $MAST_CTRL2[7] = 1$ (default), or L if $MAST_CTRL2[7] = 0$. This feature is automatically disabled if the CDR bypass is enabled. If the output is powered down, the inhibit feature will have no effect until the output driver is powered up. When powered down, the output driver bias is shut-off and both the positive and negative outputs have a 50 Ω pull-up.

Other Features

The *MAST_CTRL*[2] = 1-bit will power-down individual CDR blocks to save power. By default, all four CDRs will power-on after a reset.

NOTE: The serial interface is always on. To minimize noise, SLOPE_CTRL can control the internal / external CMOS bus / serial interface edge rate. For low-speed operation, a slower edge rate reduces the potential of noise generated by the CMOS data edges. For higher speed interface, the edge rate can be increased. This register is global to all CDRs.

For telecom applications, the CHIP_REV register contains the current CX20501 revision. This register is global to all CDRs. The PART_NUMBER register contains an ID code for this part. Please refer to the latest product bulletin for details on the CHIP_REV register contents for the CX20501.

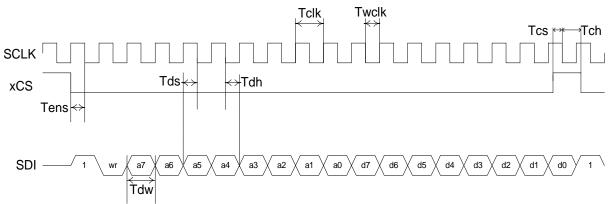
Serial Interface

The CDR functions of the CX20501 are controlled by an 8-bit register. The 8-bit register address and 8-bit data contents are addressed with a serial I/O interface. The different addresses of each register are mapped to a specific function so data can be read from or written to the registers.

Serial I/O Overview

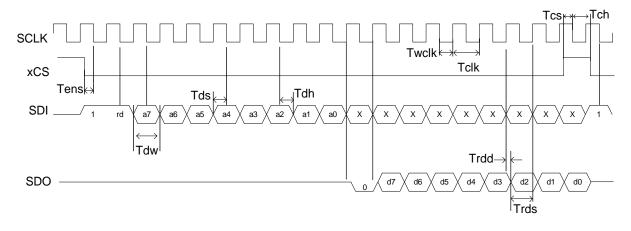
The serial I/O operation is gated by chip select signal xCS (on input terminal xCS). Data is shifted in on terminal SDI on the falling edge of the serial I/O clock input (terminal SCIk), and shifted out on the serial data output (terminal SDO) on the rising edge of SCIk. To address a register, a 10-bit input consists of the first bit (start bit, SB = 1), the second bit (operation bit: OP = 1 for read, OP = 0 for write), followed by the 8-bit address (most significant bit [MSB] first).

Timing Diagram: Clock Set and Program Modes


The timing diagrams for the serial write and read operations are shown in Figure 8 and Figure 9, respectively. Table 18 contains the specifications for the various timing parameters for the serial programming interface.

To initiate a write sequence, as shown in Figure 8, xCS goes low before the falling edge of SCLK. On each falling edge of SCLK, the 18-bits consisting of the SB = 1, OP = 0, ADDR, and DATA, are latched into the input shift register. The rising edge of xCS must occur before the falling edge of SCLK for the last bit. Upon receipt of the last bit, one additional cycle of SCLK is necessary before the input DATA transfers from the input shift register to the addressed register. If consecutive read/write cycles are being performed, it is not necessary to insert an extra clock cycle between read/write cycles, however one extra clock cycle is needed after the last data bit of the final read/write cycle to complete the operation.

On a Write cycle, any bits that follow the expected number of bits are ignored, and only the first 16-bits following SB and OP are used.


Figure 9 illustrates the serial Read mode timing diagram. To initiate a read sequence, xCS goes low before the falling edge of SCLK. On each falling edge of SCLK, the 10-bits consisting of SB = 1, OP = 1, and the 8-bit ADDR are written to the serial input shift register of the CX20501. On the first rising edge following the address LSB, the SB and 8-bits of the DATA are shifted out on SDO. The first bit output on SDO for a read operation is always 0.

On a Read cycle, any extra clock cycles will result in the repeat of the data LSB. An invalid SB or OP renders the operation undefined. The falling edge of xCS always resets the serial operation for a new Read or Write cycle. Table 18 contains the timing specifications for the serial programming interface.

Figure 8. Serial Write Mode

Symbol	Item	Notes	Minimum	Typical	Maximum	Units
t _{dw}	Data width	_	20	_	_	ns
t _{dh}	Data hold time	_	13		_	ns
t _{ds}	Data setup time	_	4.4	-	_	ns
t _{ens}	Enable setup time	_	3.7	_	_	ns
t _{cs}	Chip select setup time	_	3	_	Tclk – 3	ns
t _{ch}	Chip select hold time	_	3.6	-	_	ns
t _{rdd}	Read data output delay	_	8.6	_	23	ns
t _{rds}	Read data valid	_	11	_	_	ns
t _{clk}	SCLK period width	_	20	_	_	ns
t _{wclk}	SCLK minimum low duration	_	5		Tclk – 5	ns
t _r	Output rise time	1	—	_	0.66	ns
t _f	Output fall time	1	—	—	0.54	ns
Note: 1. Edge rate in th	ne high edge-rate mode.	I	1		1	

 Table 18. Serial Interface Timing—Specified at Recommended Operating Conditions

Table 19. Register Summary

Address	Name	d7	d6	d5	d4	d3	d2	d1	d0
00h	REF_WIN	RefWin[7]	RefWin[6]	RefWin[5]	RefWin[4]	RefWin[3]	RefWin[2]	RefWin[2]	RefWin[0]
01h	NRW_WIN	NrwWin[7]	NrwWin[6]	NrwWin[5]	NrwWin[4]	NrwWin[3]	NrwWin[2]	NrwWin[2]	NrwWin[0]
02h	WIDE_WIN	WdWin[7]	WdWin[6]	WdWin[5]	WdWin[4]	WdWin[3]	WdWin[2]	WdWin[2]	WdWin[0]
03h	WDET_CTRL	Lol_hyst[7]	Lol_hyst[6]	"0"	VcoDiv[3]	VcoDiv[2]	VcoDiv[1]	VcoDiv[0]	FacqMod
04h	OUTBF_CTRL			LOSmode	LOLmode	ClkLvl[1]	ClkLvl[0]	DataLvl[1]	DataLvl[0]
05h	LOS_CTRL	LosBiL[1]	LosBiL[0]	LosBoL[1]	LosBoL[0]	"0"	"0"	"1"	"0"
06h	MAST_CTRL			"1"	"1"	"1"	PdAll	PdSmCtr	EnSmCtr
07h	VCO_CTRL	"0"	VcoFreq[2]	VcoFreq[1]	VcoFreq[0]		"1"	"0"	"0"
09h	PD_CTRL0	PdDCservo	"0"	"0"	PdLOS	"0"	"0"	"0"	"0"
0Eh	VCO_DIV						Freqdiv[2]	Freqdiv[1]	Freqdiv[0]
0Fh	LOOP_FILTER	Force	Damp[3]	Damp[2]	Damp[1]	Damp[0]	Bw[2]	Bw[1]	Bw[0]
10h	LOOP_TRIM						Trim[2]	Trim[1]	Trim[0]
11h	ISOFT_RES	"1"	"0"	"1"	"0"	"1"	"0"	"1"	"0"
12h	MAST_CTRL2	InhPol	Inhibit[1]	Inhibit[0]	Bypass	ByPFForce			
()									
20h	SLOPE_CTRL			Int[1]	Int[0]			Ext[1]	Ext[0]
21h	GSOFT_RES	"1"	"0"	"1"	"0"	"1"	"0"	"1"	"0"
22h	CHIP_REV	rev[7]	rev[6]	rev[5]	rev[4]	rev[3]	rev[2]	rev[1]	rev[0]
23h	PART_NUM	"0"	"0"	"0"	"0"	"0"	"0"	"1"	"0"
26h	LOX_STAT1	LOS3	LOL3	LOS2	LOL2	LOS1	LOL1	LOS0	LOL0
27h	LOX_STAT2	LOS3	LOL3	LOS2	LOL2	LOS1	LOL1	LOS0	LOL0
()									
40h	Repeat CDR1								
80h	Repeat CDR2						<u> </u>		
C0h	Repeat CDR3								

1. Undefined addresses and bits are reserved for Mindspeed's use only. A 0 should be written to all undefined bits.

2. Block 20h to 25h is common to all four CDRs.

Table 20. Register Description (Sheet 1 of 7)

00h, 40h, 80h, C0h: Reference Window				
REF_WIN	[7:0] RefWin	Defines reference window (VCO count period) for the frequency detection timing period. Default RefWin[7:0] = 05h = W _{ref}		

01h, 41h, 81h, C1h: Narrow Window				
NRW_WIN	[7:0] NrwWin	Defines narrow frequency window used to signal LOLinternal = 1 to 0. Default NrwWin[7:0] = $08h = w_{narrow}$		

02h, 42h, 82h, C2h: Wide Window				
WIDE_WIN	[7:0] WdWin	Defines wide frequency window used to signal LOLinternal = 0 to 1. Default WdWin[7:0] = B4h = 180d= w _{wide}		

Table 20. Register Description (Sheet 2 of 7)

03h, 43h, 83h, C3l	h: Window Detector Contro	bl				
WDET_CTRL	[7:6] Lol_hyst	00 = LOL ge 01 = LOL ge 10 = LOL ge	Defines hysteresis for LOL detection: 00 = LOL gets updated after first detection (default) 01 = LOL gets updated after two consecutive equal LOL values 10 = LOL gets updated after three consecutive equal LOL values 11 = LOL gets updated after four consecutive equal LOL values			
	[5] MSPD reserved	Mindspeed r	eserved bit, set	to 0.		
	[4:1] VcoDiv			ider ratio (N) for Window Detector _(wide narrow) / w _{ref} * 4 * f _{vco} / N		
		VcoDiv	N	Bandwidth		
				$(f_{vco} = 2.5 \text{ GHz}, w_{(wide narrow)} = w_{ref})$		
		0000:	256	39.1 MHz		
		0001:	512	19.5 MHz		
		0010:	768	13.0 MHz		
		0011:	1024	9.8 MHz		
		0100:	1536 (default)	6.5 MHz		
		0101:	2048	4.9 MHz		
		0110:	3072	3.255 MHz		
		0111:	4096	2.441 MHz		
		1000:	6144	1.628 MHz		
		1001:	8192	1.221 MHz		
		1010:	12288	0.814 MHz		
		1011:	16384	0.610 MHz		
		1100:	24576	0.407 MHz		
		1101:	32768	0.305 MHz		
		1110:	49152	0.203 MHz		
	[0] FacqMod			equisition (default). equency acquisition.		

Table 20. Register Description (Sheet 3 of 7)

04h, 44h, 84h, C4h	04h, 44h, 84h, C4h: Output Buffer Level				
OUTBF_CTRL	[5] LOSmode	Sets operation mode for LOS output 1: Bus operation mode (default) [LOS: true = Voh, false = Hi-Z state] 0: Standard operation mode [LOS: true = Voh, false = Vol]			
	[4] LOLmode	Sets operation mode for LOL output 1: Bus operation mode (default) [LOL: true = Voh, false = Hi-Z state] 0: Standard operation mode [LOL: true = Voh, false = Vol]			
	[3:2] ClkLvl	Sets output level for clock buffer 00: 900 mV p-p differential swing 01: 500 mV p-p differential swing (default) Has no effect if xENCLK = H, hardware priority 10: Reserved 11: Power-down			
	[1:0] DataLvl	Sets output level for data buffer 00: 900 mV p-p differential swing 01: 500 mV p-p differential swing (default) 10: Reserved 11: Power-down			

05h, 45h, 85h, C5	05h, 45h, 85h, C5h: LOS Control				
LOS_CTRL	[7:6] LosBiL	Bandwidth of LOS circuit when LOS = 0			
		00: 800 kHz			
		01: 133 kHz			
		10: 8.3 kHz			
		11: 7.9 kHz (default)			
	[5:4] LosBoL	Bandwidth of LOS circuit when LOS = 1			
		00: 800 kHz (default)			
		01: 133 kHz			
		10: 8.3 kHz			
		11: 7.9 kHz			
	[3:0]	Mindspeed reserved, set to 0010.			

06h, 46h, 86h, C6h: Master Control				
MAST_CTRL	[7:3] MSPD reserved	Must be set to 00111b.		
	[2] PdAll	0: Power-up entire CDR (default) 1: Power-down entire CDR		
	[1] PdSmCtr	0: SmartCenter™ powered up (default) 1: SmartCenter™ powered down		
	[0] EnSmCtr	0: SmartCenter™ disabled 1: SmartCenter™ enabled (default)		

Table 20. Register Description (Sheet 4 of 7)

07h, 47h, 87h, C7	07h, 47h, 87h, C7h: VCO Control				
VCO_CTRL	[7]MSPD reserved	Must be set to 0.			
	[6:4] VcoFreq	VCO Center Frequency			
		000: 2.0 GHz			
		001: 2.25 GHz			
		010: 2.5 GHz (default)			
		011: 2.75 GHz			
		100: 3.0 GHz			
		101: 3.2 GHz			
	[3:0] MSPD reserved	Must be set to 0100b.			
	Note: 1. VCO Center Frequen	icy is approximate.			

09h, 49h, 89h, C9h: Power-down Control				
PD_CTRL0	[7] PdDCServo	0: Power-on duty cycle servo 1: Power-down duty cycle servo (default)		
	[4] PdLOS	0: Power-on loss of signal circuit (default) 1: Power-down loss of signal circuit		
	MSPD reserved	All other bits must be 0.		

0Eh, 4Eh, 8Eh, CEh: VCO Divider Ratio Control				
VCO_DIV	[7:3] MSPD reserved	Must be set to 00000.		
	[2:0] Freqdiv	Determines divide ratio for VCO operating Frequency 000: VCO freq/1 001: VCO freq/2 010: VCO freq/4 011: VCO freq/8 100: VCO freq/16 101: VCO freq/32		

Table 20. Register Description (Sheet 5 of 7)

	0Fh, 4Fh, 8Fh, CFh: Loop Filter Adjustment ⁽¹⁾						
LOOP_FILTER	[7] Force	0: Loop filter adjusted automatically with VCO_DIV (default) 1: Bypass with bits [6:0]					
	[6:3] Damp	Fine Tunes Damping value 0000: 9 0001: 18 0010: 36 0011: 75 0100: 120 0101: 150 0110: 240 0111: 300 (default) 1000: 320 1001: 340					
	[2:0] BW	Fine Tunes bandwidth resistor value 000: no internal resistor (open) (default) $001: 4800\Omega$ $010: 2400\Omega$ $011: 1200\Omega$ $100: 600\Omega$ $101: 300\Omega$ $110: 150\Omega$					

1. The data rates and loop bandwidths associated with the resistor and damping values are shown in Table 15.

10h, 50h, 90h, D0l	h: Internal Loop Filter	Trim
LOOP_TRIM	[2:0] Trim	Fine Tune loop filter bandwidth (should be set to 100% for OC-48 operation) 000: 60% (default) 001: 70% 010: 80% 011: 90% 100: 100% 101: 110% 110: 120% 111: 130%

11h, 51h, 91h, D1h: Ir	11h, 51h, 91h, D1h: Individual CDR Software Reset						
ISOFT_RES	[7:0] IReset	A Write access with the value AAh will trigger an internal reset for an individual CDR. The reset will be released by a second Write access with the value AAh.					

Table 20. Register Description (Sheet 6 of 7)

12h, 52h, 92h, D2h: M	MAST_CTRL2	
MAST_CTRL2	[7] InhPol	Sets the inhibit polarity 0: DoutP = L when inhibit is enabled 1: DoutP = H (default) when inhibit is enabled
	[6:5] Inhibit	Inhibits the data output with polarity selected with <i>MAST_CTRL2</i> [7] 00b: Normal operation (default) 01b: Software force inhibit 10b: Inhibit with <i>LOL</i> = H 11b: Inhibit with <i>LOL</i> = H or <i>LOS</i> = H
	[4] Bypass	0: CDR functional (default) 1: CDR bypassed
	[3] ByPFForce	If the buss LOS/LOL option is selected 0: Output pins always high Z & register status is current (default) 1: Both output pin and register status is current (buss mode disabled)

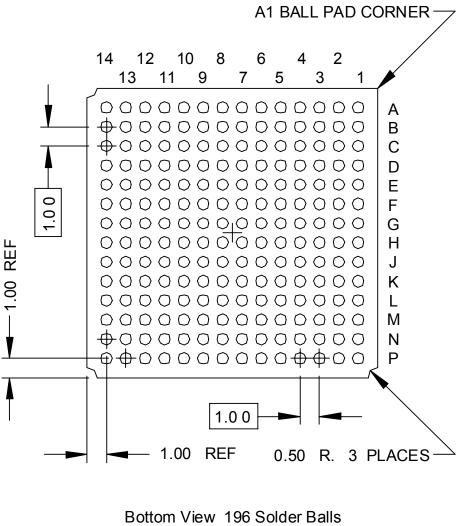
20h: Slope Control					
SLOPE_CTRL	[5:4] Int	Internal Edge Rate 00: High drive 01: Medium drive 10: Small drive (default) 11: do not use			
	[1:0] Ext	External Edge Rate 00: High drive 01: Medium drive 10: Small drive (default) 11: do not use			

21h: Global Software Reset							
GSOFT_RES	[7:0] GReset	A Write access with the value AAh will trigger an internal reset of all four CDRs. The reset will be released by a second Write access with the value AAh					

22h: Chip Revision C	ode (read-only)	
CHIP_REV	[7:0] Rev	CDR Chip Revision Code:

23h: Mindspeed Part	ID Code (read-only)	
PART_NUM	[7:0] Part#	0000010b for CX20501

Table 20. Register Description (Sheet 7 of 7)


26h: LOS and LOL St	atus Register#1 - Actual S	Status (read-only)
LOX_STAT1	[7] LOS3	LOS register for CDR#3
	[6] LOL3	LOL register for CDR#3
	[5] LOS2	LOS register for CDR#2
	[4] LOL2	LOL register for CDR#2
	[3] LOS1	LOS register for CDR#1
	[2] LOL1	LOL register for CDR#1
	[1] LOS0	LOS register for CDR#0
	[0] LOL0	LOL register for CDR#0

27h: LOS and LOL S	27h: LOS and LOL Status Register#2 - Persistent Status (read-only)						
LOX_STAT2	[7] LOS3	LOS register for CDR#3					
	[6] LOL3	LOL register for CDR#3					
	[5] LOS2	LOS register for CDR#2					
	[4] LOL2	LOL register for CDR#2					
	[3] LOS1	LOS register for CDR#1					
	[2] LOL1	LOL register for CDR#1					
	[1] LOS0	LOS register for CDR#0					
	[0] LOL0	LOL register for CDR#0					

Mechanical Specifications

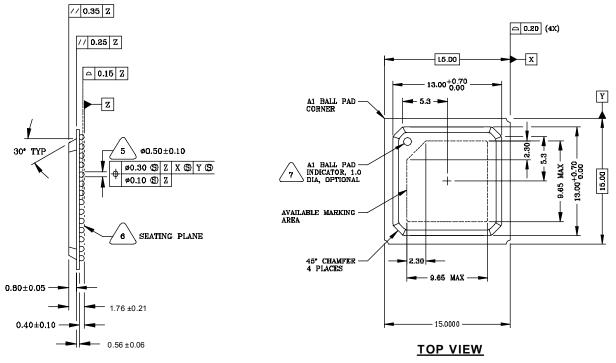

Figure 10 illustrates the ball assignments and package dimensions, Table 21 describes the ball assignment sorted by ball location and Table 22 describes the ball assignment sorted by signal name.

Figure 10. BGA Package Ball Assignment Bottom View (assume package is transparent)

(All dimensions are in mm.)

SIDE VIEW

MNDSPEED

Ball

CX20501 Quad Multi-Rate CDR (65 Mbps - 3.2 Gbps)

Table 21. Ball Assignment Sorted by Ball Location

Signal	Ball	Signal	Ball	Signal	Ball]	Signal	Ball		Signal	Ball]	Signal
AvddO	A1	AvssO	C6	Ftest3b	E11		DVdd	H2		DVdd	K7		AvddV2
CoutP0	A2	DVdd	C7	AvssC	E12		LOL1	H3		DVdd	K8		AvssC
CoutN0	A3	ExtRes0	C8	AvssC	E13		AvddC	H4		LPPn2	K9		N/C
AvssO	A4	ExtRes3	C9	DinP3	E14		AvddC	H5		Ftest2d	K10		N/C
DoutP0	A5	AvssO	C10	DinN0	F1		AvddC	H6		Ftest2c	K11		AvssV1
DoutN0	A6	Ftest3c	C11	AvssC	F2		N/C	H7		AvssC	K12		AvddO
AvddO	A7	AvddV3	C12	LOS0	F3		N/C	H8		AvssC	K13		AvddO
AvddO	A8	AvssC	C13	LPPn0	F4		AvddC	H9		DinP2	K14		AvddO
DoutN3	A9	N/C	C14	LPPf0	F5		AvddC	H10		AvssC	L1		AvddO
DoutP3	A10	AvssC	D1	LPPp0	F6		AvddC	H11		AvssC	L2		DVdd
AvssO	A11	AvssC	D2	AvddC	F7		LOL2	H12		AvssC	L3		DVss
CoutN3	A12	AvssC	D3	AvddC	F8		DVdd	H13		Ftest1b	L4		AvddO
CoutP3	A13	Ftest0a	D4	LPPp3	F9		AvddC	H14		LPPp1	L5		AvddO
AvddO	A14	xRST	D5	LPPf3	F10		DinN1	J1		LPPf1	L6		AvddO
N/C	B1	xEnClk	D6	LPPn3	F11		AvssC	J2		AvssO	L7		AvddO
AvssV0	B2	xCS	D7	LOS3	F12		LOS1	J3		AvssO	L8		AvssV2
AvddO	B3	SCLK	D8	AvssC	F13		AvddC	J4		LPPf2	L9		N/C
AvddO	B4	SDI	D9	DinN3	F14		DVss	J5		LPPp2	L10		AvddO
AvddO	B5	SDO	D10	Avddc	G1		N/C	J6		Ftest2b	L11		CoutP1
AvddO	B6	Ftest3a	D11	DVss	G2		N/C	J7		AvssC	L12		CoutN1
DVdd	B7	AvssC	D12	LOL0	G3		N/C	J8		AvssC	L13		AvssO
DVss	B8	AvssC	D13	DVdd	G4		N/C	J9		AvssC	L14		DoutP1
AvddO	B9	AvssC	D14	N/C	G5		DVss	J10		N/C	M1		DoutN1
AvddO	B10	DinP0	E1	N/C	G6		AvddC	J11		AvssC	M2		AvddO
AvddO	B11	AvssC	E2	N/C	G7		LOS2	J12		AvddV1	M3		AvddO
AvddO	B12	AvssC	E3	N/C	G8		AvssC	J13		Ftest1a	M4		DoutN2
AvssV3	B13	Ftest0b	E4	N/C	G9	1	DinN2	J14	1	AvssO	M5	1	DoutP2
N/C	B14	Ftest0d	E5	N/C	G10	1	DinP1	K1	1	AvssO	M6	1	AvssO
N/C	C1	AvddC	E6	DVdd	G11	1	AvssC	K2	1	ExtRes1	M7	1	CoutN2
AvssC	C2	AvddC	E7	LOL3	G12	1	AvssC	K3	1	ExtRes2	M8	1	CoutP2
AvddV0	C3	AvddC	E8	DVss	G13	1	Ftest1c	K4	1	AvssO	M9	1	AvddO
Ftest0c	C4	AvddC	E9	AvddC	G14	1	Ftest1d	K5	1	AvssO	M10	1	·
AvssO	C5	Ftest3d	E10	AVddC	H1	1	LPPn1	K6	1	Ftest2a	M11	1	

	AvddV2	M12
1	AvssC	M13
1	N/C	M14
1	N/C	N1
	AvssV1	N2
	AvddO	N3
	AvddO	N4
	AvddO	N5
	AvddO	N6
1	DVdd	N7
	DVss	N8
	AvddO	N9
	AvddO	N10
	AvddO	N11
	AvddO	N12
	AvssV2	N13
1	N/C	N14
	AvddO	P1
	CoutP1	P2
	CoutN1	P3
	AvssO	P4
	DoutP1	P5
	DoutN1	P6
	AvddO	P7
	AvddO	P8
	DoutN2	P9
	DoutP2	P10
	AvssO	P11
1	CoutN2	P12
1	CoutP2	P13
1	AvddO	P14

MNDSPEED

CX20501 Quad Multi-Rate CDR (65 Mbps - 3.2 Gbps)

Table 22. Ball Assignment Sorted by Signal Name

Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball	Signal	Ball
Avddc	G1	AvddO	N6	AvssC	L1	DinN0	F1	ExtRes2	M8	LPPn3	F11
AvddC	E6	AvddO	N9	AvssC	L2	DinN1	J1	ExtRes3	C9	LPPp0	F6
AvddC	E7	AvddO	N10	AvssC	L3	DinN2	J14	Ftest0a	D4	LPPp1	L5
AvddC	E8	AvddO	N11	AvssC	L12	DinN3	F14	Ftest0b	E4	LPPp2	L10
AvddC	E9	AvddO	N12	AvssC	L13	DinP0	E1	Ftest0c	C4	LPPp3	F9
AvddC	F7	AvddO	P1	AvssC	L14	DinP1	K1	Ftest0d	E5	N/C	C1
AvddC	F8	AvddO	P7	AvssC	M2	DinP2	K14	Ftest1a	M4	N/C	M1
AvddC	G14	AvddO	P8	AvssC	M13	DinP3	E14	Ftest1b	L4	N/C	M14
AvddC	H4	AvddO	P14	AvssO	A4	DoutN0	A6	Ftest1c	K4	N/C	C14
AvddC	H5	AvddV0	C3	AvssO	A11	DoutN1	P6	Ftest1d	K5	N/C	B1
AvddC	H6	AvddV1	M3	AvssO	C5	DoutN2	P9	Ftest2a	M11	N/C	N1
AvddC	H9	AvddV2	M12	AvssO	C6	DoutN3	A9	Ftest2b	L11	N/C	N14
AvddC	H10	AvddV3	C12	AvssO	C10	DoutP0	A5	Ftest2c	K11	N/C	B14
AvddC	H11	AvssC	C2	AvssO	L7	DoutP1	P5	Ftest2d	K10	N/C	G7
AvddC	H14	AvssC	C13	AvssO	L8	DoutP2	P10	Ftest3a	D11	N/C	G6
AvddC	J4	AvssC	D1	AvssO	M5	DoutP3	A10	Ftest3b	E11	N/C	G5
AvddC	J11	AvssC	D2	AvssO	M6	DVdd	B7	Ftest3c	C11	N/C	H7
AVddC	H1	AvssC	D3	AvssO	M9	DVdd	C7	Ftest3d	E10	N/C	J7
AvddO	A1	AvssC	D12	AvssO	M10	DVdd	G4	LOL0	G3	N/C	J6
AvddO	A7	AvssC	D13	AvssO	P4	DVdd	G11	LOL1	H3	N/C	H8
AvddO	A8	AvssC	D14	AvssO	P11	DVdd	H2	LOL2	H12	N/C	J8
AvddO	A14	AvssC	E2	AvssV0	B2	DVdd	H13	LOL3	G12	N/C	J9
AvddO	B3	AvssC	E3	AvssV1	N2	DVdd	K7	LOS0	F3	N/C	G8
AvddO	B4	AvssC	E12	AvssV2	N13	DVdd	K8	LOS1	J3	N/C	G9
AvddO	B5	AvssC	E13	AvssV3	B13	DVdd	N7	LOS2	J12	N/C	G10
AvddO	B6	AvssC	F2	CoutN0	A3	DVss	B8	LOS3	F12	SCLK	D8
AvddO	B9	AvssC	F13	CoutN1	P3	DVss	G2	LPPf0	F5	SDI	D9
AvddO	B10	AvssC	J2	CoutN2	P12	DVss	G13	LPPf1	L6	SDO	D10
AvddO	B11	AvssC	J13	CoutN3	A12	DVss	J5	LPPf2	L9	xCS	D7
AvddO	B12	AvssC	K2	CoutP0	A2	DVss	J10	LPPf3	F10	xEnClk	D6
AvddO	N3	AvssC	K3	CoutP1	P2	DVss	N8	LPPn0	F4	xRST	D5
AvddO	N4	AvssC	K12	CoutP2	P13	ExtRes0	C8	LPPn1	K6		1
AvddO	N5	AvssC	K13	CoutP3	A13	ExtRes1	M7	LPPn2	K9		

© 2002, 2003 Mindspeed Technologies ™, as a wholly owned subsidiary and the Internet infrastructure business of Conexant Systems, Inc. All Rights are Reserved.

Information in this document is provided in connection with Mindspeed Technologies, Inc. "Mindspeed" products. These materials are provided by Mindspeed as a service to its customers and may be used for informational purposes only. Mindspeed assumes no responsibility for errors or omissions in these materials. Mindspeed may make changes to specifications and product descriptions at any time, without notice. Mindspeed makes no commitment to update the information contained herein. Mindspeed shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions.

No license, express or implied, by estoppel or otherwise, to any intellectual property rights is granted by this document. Except as provided in Mindspeed Terms and Conditions of Sale for such products, Mindspeed assumes no liability whatsoever.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF CONEXANT PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. Mindspeed further does not warrant the accuracy or completeness of the information, text, graphics or other items contained within these materials. Mindspeed shall not be liable for any special, indirect, incidental, or consequential damages, including without limitation, lost revenues or lost profits, which may result from the use of these materials.

Mindspeed products are not intended for use in medical, life saving or life sustaining applications. Mindspeed customers using or selling Mindspeed products for use in such applications do so at their own risk and agree to fully indemnify Mindspeed for any damages resulting from such improper use or sale.

The following are trademarks of Mindspeed Technologies, Inc. the symbol M1, Mindspeed[™], and "Build It First[™] Product names or services listed in this publication are for identification purposes only, and may be trademarks of third parties. Third-party brands and names are the property of their respective owners.

For additional disclaimer information, please consult Mindspeed Technologies Legal Information posted at: http://www.mindspeed.com/, which is incorporated by reference.

Reader Response: Mindspeed Technologies, Inc. strives to produce quality documentation and welcomes your feedback. Please send comments and suggestions to mailto:tech.pubs@mindspeed.com. For technical questions, or to talk to a field applications engineer contact your local Mindspeed™ sales office listed below. For literature send email request to literature@mindspeed.com.

MNDSPEED

Headquarters

Newport Beach Mindspeed Technologies 4000 MacArthur Boulevard, East Tower Newport Beach, CA 92660 Phone: (949) 579-3000 Fax: (949) 579-3200

www.mindspeed.com